Loss of diversity in wood-inhabiting fungal communities affects decomposition activity in Norway spruce wood

نویسندگان

  • Lara Valentín
  • Tiina Rajala
  • Mikko Peltoniemi
  • Jussi Heinonsalo
  • Taina Pennanen
  • Raisa Mäkipää
چکیده

Hundreds of wood-inhabiting fungal species are now threatened, principally due to a lack of dead wood in intensively managed forests, but the consequences of reduced fungal diversity on ecosystem functioning are not known. Several experiments have shown that primary productivity is negatively affected by a loss of species, but the effects of microbial diversity on decomposition are less studied. We studied the relationship between fungal diversity and the in vitro decomposition rate of slightly, moderately and heavily decayed Picea abies wood with indigenous fungal communities that were diluted to examine the influence of diversity. Respiration rate, wood-degrading hydrolytic enzymes and fungal community structure were assessed during a 16-week incubation. The number of observed OTUs in DGGE was used as a measure of fungal diversity. Respiration rate increased between early- and late-decay stages. Reduced fungal diversity was associated with lower respiration rates during intermediate stages of decay, but no effects were detected at later stages. The activity of hydrolytic enzymes varied among decay stages and fungal dilutions. Our results suggest that functioning of highly diverse communities of the late-decay stage were more resistant to the loss of diversity than less diverse communities of early decomposers. This indicates the accumulation of functional redundancy during the succession of the fungal community in decomposing substrates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fungal community dynamics in relation to substrate quality of decaying Norway spruce ( Picea abies [L.] Karst.) logs in boreal forests.

Decaying wood plays an important role in forest biodiversity, nutrient cycling and carbon balance. Community structure of wood-inhabiting fungi changes with mass loss of wood, but the relationship between substrate quality and decomposers is poorly understood. This limits the extent to which these ecosystem services can be effectively managed. We studied the fungal community and physico-chemica...

متن کامل

The fine-scale ecological determinants for wood-inhabiting aphyllophoroid basidiomycetes

15 The fine-scale ecological determinants for wood-inhabiting aphyllophoroid basidiomycetes 16 were investigated with statistical analyses of the occurrence of fruit bodies on woody debris 17 collected in Switzerland and Ukraine. Three substrate descriptors were considered: diameter, 18 degree of decomposition and host tree species. 19 By means of Multiple Regression Trees, thresholds in the re...

متن کامل

Nutrient Dynamics and Decomposition rate of Norway Spruce Needles in Stråsan and Lajim stands

     Climate changes due to changes in a habitat leads to differences in the rate of decomposition and nutrient dynamics of leaflitters, which has many effects on the controlling factors of the decomposition process. In the present study, the rate of decomposition and nutrient dynamics of Norway spruce was evaluated for 363 days in the two forestation sites in the natural and foreign habitats, ...

متن کامل

Diversity of macro-detritivores in dead wood is influenced by tree species, decay stage and environment

Diplopoda (millipedes) and Isopoda (woodlice) are among the most abundant macro-detritivores in temperate forests. These key regulators of plant litter decomposition are influenced by habitat and substrate quality, including that of dead wood. Dead wood provides shelter and resources to macro-detritivores, but the relative effects of tree species, wood decay stage, forest environment and their ...

متن کامل

Higher fungal diversity is correlated with lower CO2 emissions from dead wood in a natural forest

Wood decomposition releases almost as much CO2 to the atmosphere as does fossil-fuel combustion, so the factors regulating wood decomposition can affect global carbon cycling. We used metabarcoding to estimate the fungal species diversities of naturally colonized decomposing wood in subtropical China and, for the first time, compared them to concurrent measures of CO2 emissions. Wood hosting mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014